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generated by the dehydration of acylated amino acids, they have
not been formed via an organometallic route to datendfumones
react with alkynes to form bicyclic intermediates that undergo a
cycloreversion reaction losing carbon dioxide and forming pyr-
roles. Thus, if Munchnones or Maochnone complexes could be
formed from acylamino carbene complexes, then a new class of
carbene complex plus alkyne annulation reactions leading to
pyrroles would be possibfe.

As the initial test of the concept, complé=® was photolyzed
under typical conditions in the presence of dimethyl acetylene-
dicarboxylate (DMAD)? Gratifyingly, pyrrole 2a was indeed

Photolysis of chromium Fischer carbene complexes has becomg©med as planned, but in only 41% yield. Use of the more stable

an established synthetic method for the synthesis of a wide range

of products includings-lactams, amino acids, peptides, cyclobu-

chelate complegb'® gave an improved 71% yield of the pyrrole.
Unfortunately, variations in the photolytic reaction conditions or

tanones, and arenes, principally due to the extensive studies byehanges in the alkyne trap resulted in significantly diminished
Hegedus and co-worket€.The presumed photogenerated inter- Yields. Knowing that carbene complexes react with alkyfes,

mediate is a chromium-complexed ketene resulting from insertion
of carbon monoxidé.Acylamino chromium carbene complexes

control reaction was performed by mixing carbdrseand DMAD
in THF solvent, pressurizing with 30 psi carbon monoxide, and

in particular have been utilized as substrates for the photochemicalltting it stand at room temperatuirethe dark.Remarkably, the

synthesis of products such @samino estersfg-lactams, and

2-aminophenols, but can demonstrate markedly different behavior

from their nonacylated analoguélore broadly, aminocarbene
complexes have been the subject of intense studie report
herein evidence for the direct, nonphotochemical insertion of

carbon monoxide at ambient temperature and subsequent forma-

tion of Miinchnones as reactive intermediates in reactions of

acylamino chromium carbene complexes and demonstrate ap- or

plications to the synthesis of heterocyclic compounds.
Consideration of the ketene intermediate resulting from pho-
tolysis of an acylamino chromium carbene complex immediately
suggests the possibility of cyclization to a "Nthnone or
Minchnone complex (eq 1). Michnones, and related mesoionic
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compounds, play an important role in heterocyclic synthesis due
to their participation in dipolar cycloaddition reactidhgsually
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pyrrole 2a was formed in 78% yield!
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Carbenelb also gave the pyrrole in high yield (90%) under
the same conditions of CO pressure in the dark. Reaction of either
laor 1b using an initial CO purge of the solution, but no applied
CO pressure, produced pyrrole, but in lower yields. Confirmation
of the Minchnone intermediate, as opposed to a reaction pathway
involving initial alkyne insertio™™was accomplished by pres-
surizing a THF solution otb in the absence of alkyne. The dark
brown solution changed to light yellow within 24 h and the
Minchnone, 3-methyl-2,4-diphenyl-1,3-oxazolium-5-oxide, could
be isolated by recrystallization from acetonitrile in 27% vyield.
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The isolated Machnone spectroscopically matched an authentic resulted in comple® in 65% yield (eq 5). An important point is

sample prepared independerififthus, the presumed initial metal-
complexed ketene led to a metal-fre€ idhinone. In the presence
of alkyne trap, chromium hexacarbonyl and carbon dioXidere
found, in addition to pyrrole, at the end of the reaction which
supports the intermediacy of the Mchnone in pyrrole formation.
Finally, high yields of pyrrole could be formed from eithHia or

1b by first reacting the carbene complex with CO in the absence

of alkyne and then adding alkyne to the yellow" Minnone
solution.

Carbenesla and 1b reacted with other alkynes, using either
initial addition of alkyne or adding alkyne to the preformed

Munchnone, and typical results are shown in eq 3. In concert

R R
T © . I @
Ph S‘e Ph Ri—=—R, Ph ’}1 Ph
Me
1a,b 2a-e
Carbene R1, Ry Pyrrole
1b COOMe, COOMe 2a 90%
1b Bu, COOMe 2b 36%
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with literature precedent from the work of Huisg€relectron

that the direct nonphotochemical carbonyl insertion is critical in
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this instance as, in generaiethoxysubstituted carbene complexes
are more photochemically reactive theaminosubstituted carbene
complexes.Using complexs as a substrate in our photochemical
benzannulation reactidfiphotolysis led regioselectively to indole
6 in 51% yield.

The mechanism broadly outlined in eq 1 is our working
framework for pyrrole formation. First, chelated complexes such
as1b would be converted to the pentacarbonyl complex which
should be more reactive toward CO insertféithen, direct CO
insertion, without photolysis, occurs providing a ketene complex.
This is an unusual step since while CO insertion readily occurs
with chromium carbene complexes lacking a heteroatom sub-
stituent directly bonded to the carbene carbon as part of the Do

rich or sterically demanding alkynes are not efficient traps of reaction; CO insertion in heteroatom-substituted chromium
Miinchnones. Isolation of sensitive acylaminocarbene complexescarbene complexes has been shown in general to be a photo-
can be avoided entirely by using a one-pot procedure of sequentialchemical, and not thermal, procéssThe acyl substituent must
addition of base, acid chloride, and alkyne to transform simple, be crucial for reducing electron donation from the nitrogen atom
stable aminocarbene complexes directly to pyrroles (eq 4). tothe carbene carbon and thus activating CO insertion. The ketene

Complex 3b leading to pyrrole2f also demonstrates that the
thermal CO insertion is not limited to aryl carbene complexes.
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cyclizes to a metal-free Michnone as evidenced by our isolation
of 3-methyl-2,4-diphenyl-1,3-oxazolium-5-oxide. The demetala-
tion is likely to be facilitated by the presence of CO. The
subsequent alkyne cycloaddition and carbon dioxide cyclorever-
sion are well established and supported by our detection of carbon
dioxide® This proposal is in marked contrast with one put forth
by Détz and co-workerd for pyrrole formation from an acylamino
molybdenum carbene complex wherein initial alkyne insertion
was followed by carbonyl insertion and ketene rearrangement to
a 2-alkoxy pyrrole. However, in our chromium case, carbonyl
insertion clearly precedes alkyne incorporation.

In summary, we have demonstrated the direct, nonphotochemi-
cal, insertion of carbon monoxide in acylamino chromium carbene
complexes, formation and trapping of Mechnones, and the use

Since unsaturated carbene complexes are quite efficient reacOf alkynyl carbene complexes as efficient and functional traps of

tants in Diels Alder cycloaddition reactiofisind there have been
a few reports of participation in dipolar cycloaddition reactiéhs,

Miinchnones for subsequent benzannulation reactions.
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